

HHFW absorption in Neutral-Beam heated NSTX plasmas

XP -1012

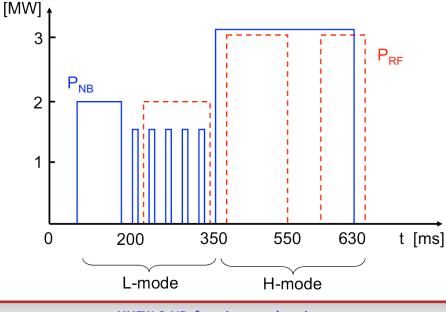
B. LeBlanc, M. Podestà, W. Heidbrink

Allotted run	time:
1 day	

Large fraction of HHFW power can be absorbed by fast ions during NB injection

- May represent an issue for combined RF+NB heating/CD
- Little/no information available so far on how much RF power goes into fast ion channel compared to other loss channels
 - Dependence on RF phase, edge conditions, fast ion energy, ...
- New tFIDA diagnostic available, good progress in developing RF codes

<u>Goals:</u>


> Characterize RF absorption as a function of RF phasing, L vs. H-mode plasmas, outer gap, magnetic field

> Provide consistent set of data to benchmark RF codes (CQL3D, AORSA, ORBIT-RF), synthetic diagnostics (FIDASIM) & compare with experiments

Target discharge includes both L and H-mode phases

- L-mode until ~350 ms, optimized for FIDA measurements
 - Similar to 2008 FIDA experiment on RF absorption by fast ions
 - NB sources: A@90kV for MSE, C@75kV modulated 10/20ms ON/OFF
- H-mode after ~350 ms, NB power ~3MW
 - Two RF pulses, P_{RF} ~ 3MW; timing: 400-550ms and 600-660ms
 - NB sources A @ 90kV, add B @ 65-90kV if needed
 - Adjust source B to minimize MHD but maintain good signal on CHERs

3

Run plan for 1 day XP, ~24 good shots

- Establish baseline scenario:
 - Modify sh#130608, B_{tor}=5.5kG, I_{pl}=900kA, gapout 4cm, n₀~4x10¹⁹m⁻³ @ 400ms, no RF
 - Check for reliable L-H transition at ~350ms
 - Introduce RF; phasing 13m⁻¹
- Start scans:
 - Scan RF phase: 13m-1, 8m-1, 3m-1 (max 3 shots)
 - Scan outer gap: 4cm, 6cm, 8cm
 - For each value of outer gap, take a *NO RF* reference shot
- Identify "best case" and scan B_{tor}: 4.5kG, 3.5kG
- Identify "best case" @ B_{tor}=5.5kG
 - Scan NB injection voltage (source C during L-mode)
- Need 3MW of HHFW during H-mode phase
- Need all fast-ion diagnostics, moderate Lithium evaporation, small/no ELMs

